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A number of experiments have indicated that the behaviour of longitudinal vortices 
in the sublayer of a turbulent boundary layer has a significant effect on the 
equilibrium of the whole flow field, but the formation of such longitudinal vortices 
remains unclarified. In  the present paper, paying attention to the random turbulent 
motions normal to the wall which induce a dynamic instability causing the 
generation of the regular longitudinal vortices, a turbulence model is introduced to 
analyse the generation of the longitudinal vortices in the sublayer of a turbulent 
boundary layer. 

By integrating the results of the analysis with previous experimental results for 
the behaviour of developing longitudinal vortices, a feedback loop linking regular 
and irregular motions in the turbulent boundary layer is presented. 

It has been experimentally confirmed that even at low Reynolds number, regular 
longitudinal vortices are formed when a disturbance is applied to a boundary layer. 
As for the stability region described in terms of the intensity of the disturbance and 
the wavenumber of the longitudinal vortices, no conflict between analysis and 
experiment is observed. Using the thermodynamic argument of irreversible processes 
the formation of longitudinal vortices close to the wall by the turbulence in the 
boundary layer is shown to be physically reasonable. 

1. Introduction 
It has been accepted that the growth-burst process of longitudinal vortices formed 

in the viscous sublayer of a turbulent boundary layer on a flat plate constitutes a 
vital basic step to the establishment of a turbulent boundary layer (Cantwell 1981), 
but with respect to the particularly significant mechanism of the longitudinal 
vortices being generated, the solution is yet to be obtained. 

The longitudinal vortices themselves do impart a stationary periodic three- 
dimensionality to the flow, but do not directly cause turbulence. With progressive 
growth of the longitudinal vortices the vortices on both sides of an upwash come 
closer together and form a pair, which intensifies the upwash ; and as the result of an 
unstable velocity profile being locally generated, horseshoe vortices are formed 
(Blackwelder & Eckelmann 1979). There is a close resemblance between this process 
and the behaviour of Gortler vortices, i.e. longitudinal vortices in a boundary layer 
on a concave plate (Aihara & Koyama 1981a, 1981b, 1982; Swearingen & 
Blackwelder 1987). As stated above, in the boundary layer along a concave surface 
the longitudinal vortices are formed as Gortler vortices due to the primary dynamic 
instability, while in the turbulent boundary layer along a flat plate they are formed 
by unknown causes. Because of this similarity, the longitudinal vortices of a 
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turbulent boundary layer on a flat plate are often discussed in relation to Gortler 
vortices. 

In this connection it is important to make clear how the same effect of the 
centrifugal force causing Gortler vortices to develop on a concave plate occurs on a 
flat plate. 

Investigating the influence of the growth of a boundary layer in the analysis of the 
stability of longitudinal vortices on a concave plate, the present author and others 
have found that the existence of a positive i%//ax (where v is the component of the 
mean flow of a boundary layer normal to the wall and x is the streamwise coordinate) 
is equivalent to having a concave wall. The development of longitudinal vortices has 
also been experimentally verified by deliberately setting such a non-parallel flow in 
the boundary layer on a rough flat plate (Aihara, Tomita & Ito 1985). This finding 
is also pointed out by Brown & Thomas (1977), where the coherent structure of 
turbulence is discussed in relation to the curvature of the streamline a t  the edge of 
the boundary layer given by the second derivative of the thickness with respect to 
the streamwise direction. As another possibility of creating longitudinal vortices in 
the boundary layer on a flat plate, the generation based on the flow curvature due 
to an amplified two-dimensional travelling wave has also been debated (Gortler & 
Witting 1958; Benny & Lin 1960; Klebanoff, Tidstrom & Sargent 1962; Greenspan 
& Benny 1963). 

Comparing these discussions with the experimentally observed behaviours of 
longitudinal vortices in the sublayer, it seems that these conceptions fail to explain 
fully the generation of longitudinal vortices in the sublayer. The longitudinal vortices 
resulting from the condition aV//ax> 0, that is, due to the concavity of the 
streamline, may be equated to Gortler vortices. Meanwhile it is likely that laV//axI 
increases as the distance from the wall increases. As the axes of Gortler vortices, 
especially in the amplified state, will be located in the outer layer of the boundary 
layer, the longitudinal vortices thus formed will also be located in the outer part of 
the boundary layer. Then these longitudinal vortices will not persist for a long time 
because of the peripheral large disturbance and accordingly it is hard to presume that 
they will behave as structural longitudinal vortices of the sublayer. 

Further, as for the generation due to amplified waves, even if an irregular two- 
dimensional disturbance develops in the turbulent boundary layer, such a 
disturbance will decay in a flow such as in the sublayer close to the wall. 

Therefore the present author has decided to reconsider the problem taking the 
longitudinal vortices in the sublayer as a specific property of the turbulent boundary 
layer. Here the important points are that (i) the physics explaining that the 
statistical property of the random fluctuations in the turbulent boundary layer 
should be linked to the generation of structural longitudinal vortices, and (ii) both 
the turbulence and the longitudinal vortices constitute a sort of feedback system to 
maintain the equilibrium of a fully developed turbulent boundary layer. 

2. Analysis 
2.1. Dynamic instability due to Reynolds stress and a turbulence model 

It should be noted that what is common to the generation of longitudinal vortices is 
that the fundamental flow possesses either centrifugal force or buoyancy as dynamic 
forces in the direction normal to the wall surface ; and these forces bring about the 
dynamic instability of fluid which induces the longitudinal vortices. The condition 
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for such instability emerges when the dynamic force is spatially distributed such that 
it diminishes in its applied direction. 

It is apparent that in a constant-temperature parallel laminar boundary layer on 
a flat plate, there is no dynamic force of either kind and accordingly there is no static 
pressure gradient normal to the wall surface either. For a turbulent boundary layer 
along a concave wall (radius of curvature r ) ,  the general equation for the time- 
averaged motion normal to the wall to be considered is 

It has been assumed that r is sufficiently larger than the thickness of the boundary 
layer, where y ,  p ,  p ,  u, v, F ,  and vo are respectively the coordinate normal to the wall 
surface, constant density, static pressure, velocity in x-direction, velocity in y -  
direction, body force and molecular viscosity ; an overbar stands for time averaging, 
a prime represents a fluctuation, and V2 is the Laplacian operator. The dynamic 
instability which generates Taylor vortices (Taylor 1923) and Gortler vortices 
(Gortler 1940) originates from an equilibrium between a 2 / r  and ( - l / p )  (ap /ay ) ,  while 
the thermal instability (Terada 1928) arises from that between F and ( - l/p) @ l a y ) .  
As stated in fj 1, it  is also understandable from (1)  that aa//ax potentially contributes 
to the generation of longitudinal vortices. Similarly, when the third, fourth and sixth 
terms of (1) and the distribution of p balancing them fall into a dynamically unstable 
equilibrium, even on a flat plate ( r :  infinite) longitudinal vortices will emerge 
directly, caused by a disturbance within the boundary layer. In  the model concerning 
the longitudinal vortices in the sublayer (i.e. Coles 1978), discussion about 
Taylor-Gortler vortices centres on the emergence of a local curvature due to changes 
in the flow, that is, the disturbance is considered to contribute to the formation of 
longitudinal vortices through the temporal concavity of the stream surface. 

For a fully developed turbulent boundary layer on a flat plate, (1) can be 
approximated as follows: a v 1 2  - a p  

(1)‘ - = _ _ _  
ay P a y + ” o ~ .  

Referring to Klebanoff ’s experiment (1955), the conceptional diagram of the left- 
hand side of (1)’ will look like figure 1 and it is seen that the regions fulfilling the 
above-mentioned condition for dynamic instability will be the outer layer and the 
sublayer of the boundary layer. As indicated in figure 1 (b ) ,  the domain in which the 
dynamic force a p / a y  weakens in the direction of its application, is dynamically 
unstable and accordingly the second derivative of with respect to y is important. 
Figure 1 ( b )  is a schematic expression of this relationship. In  the outer layer, where 
large-scale turbulence prevails, the growth and development of any systematic 
longitudinal vortices is unlikely ; and therefore subsequent discussions will be 
confined to the instability in the sublayer and its vicinity. 

It is common when discussing the turbulent boundary layer, instead of dealing 
directly with the Reynolds stress as in (l)’, to shift the Reynolds stress term to the 
right-hand side so that in the so-called turbulence model it is treated as a viscous 
term (Launder & Spalding 1972). To introduce this procedure, (1)’ may be re-written 

Comparison between and the molecular viscous stress vo &/ay shows that both of 
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- I  - 
Direction of dynamic force 

FIGURE 1 .  (a) Distribution of ;;"i/V in the boundary layer on a flat plate,as measured by Klebanoff 
(1955). (6) Schematic figure of the distribution of dynamic force, aw'*/ay, and the stable and 
unstable regions in the turbulent boundary layer. 

these represent mean transports of momentum in the y-direction. The form of (2) 
suggests the introduction of a turbulence model assuming that ;;T" also depends on 
av/ay. The turbulence model is a mathematical hypothesis and the validity can only 
be verified by experimentation, but the introduction of this model will make it 
possible to express in terms of the mean velocity v and an unknown turbulence 
viscosity vT. As stated later the y-directional distribution of vT is vitally associated 
with generation of the longitudinal vortices in the sublayer. Thus, this model will 
offer one means of linking the disturbance intensity in the boundary layer to the 
generation of the longitudinal vortices in the sublayer. In  the case of a boundary 
layer - developing in the x-direction, av/ay > 0 is valid; therefore the introduction of 
--'2 = vT av/ay as a so-called turbulence model into (2) will make vT < 0 valid. Thus, 
the problem of dynamic instability in the turbulent boundary layer will reduce to one 
of viscous instability with diffusion in a direction which is the reverse of that due to 
molecular viscosity. 

Now (2) may be re-written as follows: 



Longitudinal vortices in the sublayer due to boundary-layer turbulence 115 

where v is a kinematic viscosity coefficient which is equal to vg on the wall surface and 
usually becomes a function of y as the distance from the wall increases. 

Based on the above, the linear stability of longitudinal vortices will now be 
analysed . 

2.2. Linear stability analysis of longitudinal vortices 

The coordinates (x, y, z )  are respectively orthogonal coordinates in the direction of a 
uniform flow from the leading edge of a two-dimensional plate, in the normal 
direction to  the plate and in the direction parallel to the leading edge, their velocity 
components in respective directions being (u, v, w). With respect to the mean flow, 
the non-uniform static pressure ~ ( y )  and the parallel velocity U(y) will be considered, 
and it is supposed that on these are superposed the longitudinal vortices-induced 
velocity field and static pressure. Here a temporal or spatial amplification of the 
longitudinal vortices should be presumed. Here, considering the experimental fact 
that the longitudinal vortices are formed non-stationarily in the sublayer, Gortler's 
version based on the temporal amplification (Gortler 1940) will be taken as an 
analytical expression of the longitudinal vortices. Namely, 

u = ~ ( y )  + G(y) * cos az ewt, 1 

w = G( y ) . cos vz * ewt, 

w = 8( y) * sin vz. ewt , 

p = p ( y ) + ~ ( y ) - c o s a z . e ~ t .  

where the quantities bearing are disturbance amplitude functions; and v, w are 
respectively the spatial wavenumber and the temporal amplification factor. 

Next, substitution of (4) into the continuity equation and Navier-Stokes equations 
yields the following linear equations for disturbance due to the longitudinal vortices : 

dv" 
-+a8 = 0, 
dY 

(5) 

The boundary conditions are set such that the disturbance amplitude may be zero 
at y = 0 and co. I n  (7) and (8) the same kinematic viscosity coefficient v is employed, 
but in (6) for x-directional motion a different v' is adopted. This v' is significantly 
affected by the correlation of turbulence velocities in the x- and y-directions, u' and 
v', and for its turbulence model numerous studies have been done (for instance, 
Launder & Spalding 1972) since Prandtl (1925). Then, as is obvious from (5)-(8), (6) 
is not simultaneous with the other three equations. Therefore, (6) will not be included 
in subsequent analyses for stability (except when .ii must be found). 

As shown in (3), v is generally a function of y. According to Klebenoff's experiment 
(1955), a t  u,y/v, < 100, is proportional to  y1.2 (figure 1) .  Meanwhile, &/ay being 
proportional to yf, an approximate model which assumes that vT is proportional to 
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y close to the wall will hold. Thus, for the sublayer under consideration and its 
vicinity, the following equation can be obtained : 

v 
- = 1+ay, 
VO 

(9) 

where a is a constant. Eliminating tZ,@ from (5) ,  (7)  and (8) and employing (9) yields: 

{ ( 1 + ky ) ($ - cr2) + 2k $ - w } ($ - +') v" = 0. 

Equation (10) is a non-dimensional equation taking the friction velocity u,, vo/u,  
and v,/u," respectively as units of velocity, length and time ; and k = avo/u,. 

The solution to  the present problem will be given by such a relation of eigenvalues 
of cr, k and w that in (10) the conditions v" = 0 and dv"/dy = 0 can be satisfied a t  
y = 0 and CQ. If w > 0, i.e. the unstable domain of longitudinal vortices agrees with 
k < 0, that is, the dynamic instability due to  the turbulent motion, the physics of 
longitudinal vortices formation stated in $2.1 will be substantiated. 

First a solution to  ($-+ = 0, 

which satisfies the boundary conditions a t  infinity, will be given by 

v" = A ,  e--by, (12) 
where A ,  is a constant. 

(Finlayson 1972). It is seen that among the solutions, close to the wall, to 
Next, another solution is to be sought by the method of weighted residuals 

one which satisfies the boundary conditions at infinity is 

v"=B 0 e-hy, h = k+(k2+v2+w)4: 

where B, is a constant. Further, putting 

v" = (B,+B, y +B, y2+B3y3 + . . .) e-'@, (15) 

(where B,,B,, . . . , are constants), substituting (15) into (13), and integrating it from 
y = 0 to y = 00 yields an algebraic equation containing eigenvalues and B,,B,, . . . . 
Similar integrations after multiplying (13) by y, y2, . . . , yield other algebraic 
equations. Eliminating B,, B,, . . . , from these equations reduces (15) to  : 

fi = B,(1 +MI y+M, y2+M3 y3+.  . .)e-AY, (16) 
where M,,  M,, . . . are coefficients containing CT, k,  and w.  Summation of (12) and (16) 
gives a solution to (10) which satisfies the boundary conditions at infinity. Then with 
the boundary conditions for y = 0 provided, the following equation can be derived 
as a secular equation of the ultimate eigenvalue relation: 

a+M,-h = 0. (17) 

2.3. Results and discussion 

Equation (17), namely F ( c r , w , k )  = a+M,-h = 0 is solved as follows using a 
computer. That is, the value of k which satisfies F(cr, w ,  k) = 0 for specific values of 
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FIQURE 2. Stability diagram for longitudinal vortices near the wall. Experimental points 0 and 
are obtained for the roughness-Reynolds-number range 33.3-83.3 and 133-167, respectively. 

w and u is found. In consequence a stability diagram as indicated in figure 2 is 
obtained using the first four terms in (16) ; k on the ordinate is negative. It is known 
that the longitudinal vortices will be generated in the region where the equilibrium 
in the y-direction in (1)’ constitutes the condition for dynamic instability. 

From figure 2, it is seen that in a fully developed turbulent boundary layer, the 
unstable range of wavenumber for longitudinal vortices becomes wider, while in a 
decayed turbulent boundary layer, the wavenumber of the longitudinal vortices 
becomes smaller and the rate of the amplification reduces. 

A broken line linking the minimum values in curves for w = constant will provide 
the condition for the corresponding maximum amplification of the disturbance. 
Incidentally, employing Klebanoff’s data (1955) of the distribution of near the 
wall surface based on his experiment about a fully developed turbulent boundary 
layer (u, y/v, 2 lO,R, = 4.2 x lo6) and an experimental formula (Schlichting 1968) 
about a boundary layer which develops according to a one-seventh power law, the 
value of k is estimated a t  -8.7 x lo2, and it is seen that the wavenumber u of the 
most amplified longitudinal vortices will be of the order of lo2 or more. This estimate 
is only rough since the one-seventh power law is not a good approximation for the 
flow in the vicinity of the wall. It is significant, however, that from this estimate it 
follows that in the sublayer of a developed turbulent boundary layer u of the most 
amplified longitudinal vortices is large or in other words small-scale vortices are 
selectively amplified. 

Referring to the results obtained above, the important points mentioned in 5 1 will 
be discussed below. 
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FIGURE 3. Variation of the normal and the spanwise velocity components of longitudinal 
vortices, v" and d, in terms of u, y/vo. (a )  w = 50.0, u = 12.0. ( b )  w = 5.0, u = 3.6. 

(i) The physics stated above that the statistical property of a turbulent boundary 
layer as represented by the y-directional distribution of produces a dynamic 
equilibrium expressed by (1)'. This equilibrium yields a dynamically unstable 
distribution in the sublayer which is quantitatively shown by the instability of 
longitudinal vortices at  k < 0 in the present analysis. Through the introduction of a 
turbulence model which is deemed physically valid, it is deduced that the random 
turbulence phenomenon, as the turbulence kinematics viscosity which is a statistical 
property, contributes to the formation of regular longitudinal vortices. This relation 
will be acceptable as long as the time constant for the growth of longitudinal vortices 
can be considered sufficiently large as compared with the time constant for 
turbulence. 

Distributions of 6 and G for different IkI are shown in figure 3. As expected, in the 
case of large Ikl, the damping due to the viscosity is large, the distributions 
concentrate close to the wall, whereas in the case of small 1k1, where the coherent 
longitudinal vortices grow, the distributions extend from the wall. Though they have 
something in common, these longitudinal vortices should be distinguished from 
Gortler vortices. 

(ii) The statistical distribution and the process of achieving the equilibrium in the 
turbulent boundary layer is beyond the scope of the present analysis. Namely, the 
present analysis gives an eigenvalue relation among the intensity of the turbulence 
in the existing boundary layer, the wavenumber of longitudinal vortices in the 
sublayer, the amplification factor, and the distribution function. It does not, 
however, yield any solution for the turbulence in the boundary layer. As for v"(y), 
experimentally assuming in (9) that it is proportional to y close to the wall, its 
coefticient is obtained as an eigenvalue k in the stability analyses. Nevertheless, by 
considering the behaviour of the longitudinal vortices supported by available 
experiments, it is possible to suggest the following feedback loop (figure 4). Namely, 
it is known from the obtained value of c corresponding to large IkI for a fully 
developed turbulent boundary layer that the wavelength of the most amplified 
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FIGURE 4. Feedback loop linking the intensity of turbulence in the boundary layer with the 
formation of longitudinal vortices in the sublayer. 

longitudinal vortices in this state is of the order of at most one-tenth the value of 
vo/u,  which is the scale of the sublayer thickness. Also it should be noted that the 
corresponding value of w is very large. In such a condition, the rapid dissipation of 
energy transferred from the mean flow prevails, and the coherent structure will easily 
vanish under the influence of molecular viscosity. This fact implies that the 
contribution of the longitudinal vortices, through their growth, ejection and 
breakdown, to the energy supply to the turbulence (Kline et al. 1967; Corino & 
Brodkey 1969; Kim, Kline & Reynolds 1971; Willmarth & Lu 1972) diminishes, 
which leads to a decrease in ;;T", i.e. a drop in lkl. With the drop in Ik(, c in figure 2 
decreases along the dotted line and accordingly the wavelength of the amplified 
longitudinal vortices increases. Thus, the vortices with a wavelength of about 10-lo2 
in vo/u,  as experimentally observed will emerge and through their ejection and 
breakdown the value of ;;T" increases, thereby Ikl increases. Such a feedback system 
can be considered to explain how an equilibrium IS maintained between coherent 
motion and random turbulence in the turbulent boundary layer. It can be inferred 
that this process produces the fluctuation of the longitudinal vortices observed in the 
sublayer. 

According to Rao, Narasimha & Narayanan (1971), the mean time between bursts 
is found to be 6S/U, where U and 6 are the external flow velocity and the boundary- 
layer thickness, respectively. The bursting interval seems to be associated with the 
time constant of the feedback loop suggested from the present analysis. Since it is 
suspected that a disturbance in the outer layer plays a vital role in the feedback 
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mechanism, it would be reasonable to think that the scales which represent not only 
the sublayer but also the boundary layer as a whole are involved in the determination 
of the time constant. 

(iii) Further, extensively applying the results of the present analysis to a general 
boundary layer involving a disturbance, it may be speculated that even in the case 
of a laminar boundary layer involving a disturbance of small amplitude such as 
Tollmien-Schlichting waves there is the likelihood of longitudinal vortices being 
generated close to the wall surface on account of small 2112 or the accompanying small 
lkl and the flow being three-dimensionalized. 

3. Experiment 
The significance of the present study lies not in the fact that the transition process 

of a boundary layer has been investigated through the usual harmonic analysis of 
small disturbances, but that a regular structural pattern of an already disturbed 
boundary layer is being investigated. Thus the experimental verification of the 
process of the formation of regular structure due to fluctuations is of great 
importance in the present study. 

The above analysis had revealed that the distribution of 2112 in the boundary layer 
dominates the formation of longitudinal vortices and the Reynolds number is not 
directly involved. Therefore, the experiment was designed such that a random 
disturbance was deliberately introduced into a laminar boundary layer of low 
Reynolds number to create longitudinal vortices therein. 

3.1. Apparatus and procedure 
The experiment was conducted with a two-dimensional flat plate, 1000 mm 
long x 10 mm thick (figure 5), placed in a suction type low-turbulence wind tunnel 
with a cross-sectional area of the test section of 500 mm x 500 mm. For convenience 
of flow observation, both the test section of the wind tunnel and the flat plate were 
made of transparent acrylic resin. A gap of 1 mm was provided between the flat plate 
and the tunnel walls. The leading edge of the plate was sharpened in a wedge of 30'. 
At 100 mm from the leading edge there was set spanwise a two-dimensional slit which 
was cut at  an angle of 30" to the surface, the width of the slit being 1 mm. 

The measurements consisted of observations of the flow by photography from 
outside the test section and quantitative measurements by means of a x-probe for 
hot-wire anemometry attached to a three-dimensional traversing mechanism located 
within the test section. As the measurement of and v' are especially important for 
this study, the calibration was carefully performed and the cosine law, i.e. directional 
characteristics of hot wire, was confirmed. As the swept angle of each wire is f 30°, 
the calibration was performed by changing the probe angle within +SO" so as to 
confirm the cosine law between + 50' and - 50" for each wire. As a matter of fact, 
the measured deflection of the flow is less than 4' st the most, which is well within 
the calibration. The signals were processed by the computer to calculate and display 
the instantaneous values and statistical values of u and v spectra and other necessary 
quantities. 

3.2. Results and discussion 
3.2.1. Generation of longitudinal vortices 
JIS-specified no. 60 abrasive grains were evenly sprayed spanwise over a width of 
54 mm from 0.5 mm downstream of the slit. The diameters of grains are less than 
250 pm. 
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FIQURE 5. Flat plate with a slit for flow visualization at 100 mm from the leading edge. The 
wall is covered by grains 54 mm in width downstream of the slit. 

The experiment was performed at wind velocities up to U = 5 m/s. The turbulence 
level of the main stream was less than 0.08%, and the roughness Reynolds number 
ranges between 33.3 and 83.3. 

Kerosene vapour for flow observation was released from the slit ; in the absence of 
the grains the vapour was transported as a uniform film along the wall. As mentioned 
above, it is necessary to ensure that the slit does not disturb the flow, but strictly 
speaking the flow will temporarily separate a t  the slit and a disturbance due to this 
separation is unavoidable. Therefore it is so designed that a disturbance a t  the slit, 
if ever it occurs, can be absorbed into the random disturbance downstream of the slit 
caused by grains. 

Figure 6 illustrates longitudinal streaks emerging on the flat plate as photographed 
in this experiment. The Reynolds number a t  the downstream end of surface 
roughness referring to the distance from the leading edge was less than 5 x lo4, 
showing that the natural flat-plate boundary layers are sufficiently stable. A periodic 
phenomenon apparently resulting from the surface roughness was recognized. In 
view of the observations that (i) the streaks are very regularly spaced with the 
spacing tending to widen with an increase in the wind velocity and that (ii) the 
periodic dimension ( 3 4  mm) differs from the grain diameters, it is likely that the 
streaks are not produced as wakes of the random surface roughness elements. Thus 
this phenomenon is one which ought to be considered as related to the turbulence 
within the boundary layer caused by the surface roughness. 

Figure 7 illustrates an example of a boundary layer developing downstream of the 
roughness for U = 5 m/s, where 13 indicates the momentum thickness. There is little 
variation in a / U  and @/U,  which means that this phenomenon differs from generation 
of longitudinal vortices due to a@//ax as stated in the previous paper (Aihara et al. 
1985). It is seen from figure 8 that u' is strongly induced by the surface roughness and 
v' is proportional to U. Under this experimental condition it is supposed that since 
the maximum values of disturbances within the boundary layer tend to decay 
downstream, the longitudinal vortices generated in the sublayer are not amplified 
enough to contribute to the energy for turbulence, correspondingly that Reynolds 
number based on the maximum grain diameter, roughness Reynolds number, is in 
the admissible range (Schlichting 1968). Therefore the experiment is done in the 
range where the equilibrium of the turbulent boundary-layer through formation of 
longitudinal vortices is not yet attained. The experimental conditions are convenient 
for comparison with the analysis in $2. The measured values of Ik( and (r about 
definitely regular longitudinal streaks are shown in figure 2, where Ikl is given as the 
average of three values obtained a t  a value of y halfway between the position of a 
maximum value of ( p ) i / U  and the wall. The experimental value falling in the 
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FIGURE 6. Flow visualization of the surface patterns. Longitudinal streaks are regularly spaced 
in the sublayer. Roughness Reynolds number is 83.3. Flow is from left to right. 
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FIGURE 7. Distribution of mean velocity andturbulence. Roughn2  Reynolds number is 83.3. 
(a )  a / U  and q/U.  ( b )  (uf8)k/U, (d2)f/U and u'v'/u2. 
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FIGURE 8. Decay of maximum intensity of turbulence in the downstream direction. 0, A, U = 
2 m/s, roughness Reynolds number = 33.3; 0 ,  A, ., U = 5 m/s, roughness Reynolds number = 
83.3. 

instability region is obtained for U = 5 m/s, x = 160 mm (just downstream of 
roughness), while the other experimental values on the stable side have been 
obtained for U =  3, 4, 5m/s,  x = 200mm. It is seen that as the turbulence 
downstream decays, correspondingly the longitudinal vortices also decay and shift to 
the stable re@n. 

In  (1)’, a(u’v’)/az is ignored as being sufficiently small as compared with aV‘2/ay 
under equilibrium of a mean flow. This is true with a fully developed flat-plate 
turbulent boundary layer. In the case of an experiment as described in 93, however, 
a t  the downstream end of the surface roughness where an artificial disturbance 
terminates in a discontinuity, (??I rapidly decays downstream as illustrated in figure 
8. Thus in this case a(X)/az is comparable to av’2/ay and influences the dynamic 
instability of longitudinal vortices. As evident from the figure, a ( a ) / a x  is positive 
and accordingly, when this effect is added to the left-hand side of (i)’, the formation 
of the longitudinal vortices in the sublayer will be promoted and in consequence the 
instability region in figure 2 based on (1)‘ is expected to spread just downstream of 
the surface roughness. Indeed regular longitudinal streaks can be recognized in the 
present experiment in spite of some of the experimental conditions (U < 5 m/s, 2 = 
200 mm) being in the stability region of figure 2 ; this is supposed to be due to the 
influence of a(u”) /az just downstream of the surface roughness. 

As noted in 52.2, can be modelled as 
- a@ 

aY 
- u’v’ = v’ - . 

Therefore, if we suppose that v’ varies mainly in the y-direction, we get 
- 

ax 

and in the same way as in the turbulence model of 3, we recognize the importance 
of ~ ( y )  in this case, too. It should be noted that plays an important role, when 
the third term of the left-hand side in (1) becomes of the same order of magnitude as 

, F1,N 214 
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x (mm) 

FIGURE 9. Flow visualization of the surface pattern. (a)  Longitudinal streaks are regularly spaced 
in the sublayer. U = 4 m/s. Roughness Reynolds number is 133. ( b )  Transitional flow. U = 5 m/s. 
Roughness Reynolds number is 167. 

the fourth term. Under the state to which Gortler’s version applies, which is the 
assumption of the present analysis, the streamwise derivative is excluded, and the 
equilibrium of (1)’ is considered important. 

3.2.2. Transitional $ow 
Now preliminary results obtained similarly using the JIS-specified no. 36 abrasive 
grains (diameter less than 500 pm) are to be described. I n  this case the boundary 
layer becomes transitional in the range of U = 4 m/s to 5 m/s under the effect of 
surface roughness ; the corresponding roughness-Reynolds-number range is 133-167. 
In figure 9(a )  at  U = 4 m/s, it is seen that in spite of larger surface roughness, the 
periodic streak spacing is almost the same as in figure 6. At U = 5 m/s (figure 96), the 
streaks become unsteady and it is seen that the width in the z-direction is far larger 
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FIGURE 10. Spanwise variation of the streamwise and the normal mean velocity components, %/U 
and D/U. x =  170mm. (a)  U =  4m/s.  Roughness Reynolds number is 133. ( b )  U =  5m/s .  
Roughness Reynolds number is 167. 

than the earlier streak spacing. Referring to figure 9 (a ,  b ) ,  the z-direction periodicity 
due to vortices is shown in figure 10(a, b) .  It is apparent that in the state of energy 
being supplied from longitudinal vortices to the disturbance, the longitudinal 
vortices have a large wavelength and (T is small, which qualitatively agrees with the 
feedback mechanism as speculated from the linear theory. Eigenvalues a t  U = 5 m/s 
entered in figure 2 will fall into the instability zone, presenting no conflict with the 
analysis. 

Figure 11 shows st streamwise change of the disturbance. At U = 4 m/s, it is seen, 
.5.! 
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FIGURE 11. Variation of maximum intensity of turbulence in the downstream direction in the 
transitional flow. 0, A, 0, U = 4 m/s, roughness Reynolds number = 133; 0 ,  A, ., U = 5 m/s, 
roughness Reynolds number = 167. z = 600 mm, y = 0.8 mm. 
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FIGURE 12. Comparison of spectral distributions of u' before (U  = 4 m/s) and after (U = 5 m/s) 

the transition. 

the disturbance attenuates in the x-direction, but a t  U = 5 m/s, it attenuates up to 
x = 400 mm, but thereafter it begins to  amplify. 

Meanwhile, figure 12 shows spectral distributions ofu' a t  U = 4 m/s, x = 600 mm 
and a t  U = 5 m/s, x = 600 mm for comparison. The peak appearing around 40 Hz at 
U = 5 m/s is considered to be associated with the unsteadiness of the flow ; it seems 
to correspond to bursting. This suggests that there is an inherent time constant for 
the feedback loop. After the bursting appears, the flow field becomes complicated 
owing to the interaction between the turbulence from the roughness and that in the 
longitudinal vortices. Detailed experiments in the turbulence zone are beyond the 
scope in the present paper. 
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4. Discussion of longitudinal vortices from the viewpoint of the 
thermodynamics of irreversible processes 

The theme of the present paper is to investigate the process of achieving a 
nonlinear equilibrium including turbulence. It is therefore considered necessary to 
provide a reasonable explanation about why in such a field the longitudinal vortices 
constitute an object of study. Such a complex flow should be analysed by using the 
Navier-Stokes equations but it is practically difficult. Instead, the thermodynamics 
of irreversible processes will here be introduced to obtain a general view of the flow 
field. The introduction of the thermodynamics of irreversible processes is expected to 
relate the present problem to the newly developed science of dissipative structures 
(Glansdorff & Prigogine 1971). 

A change of entropy s per unit volume of a fluid can be expressed by 

Ds 
Dt 

pT- = a, 

where the left-hand side shows the Euler derivative of s multiplied by constant 
temperature T and p ,  and @ is the dissipation function. Transformation of 0 yields : 

pT- Ds = - ~ V , V ~ P + / M L I  2 , 
Dt 

where ,u and o are the viscosity and the three-dimensional vorticity vector 
respectively. Equation (21)  shows that the change of s can be expressed using the so- 
called flow term (the first term on the right-hand side) and the production term in 
the quadratic form (the second term on the right-hand side), whereby the condition 
for a thermodynamically quasi-equilibrium stationary state for an open system is 
that the entropy production rate is minimum (Glansdorff & Prigogine 1971). Then 
the time-averaged (21)  is integrated from an arbitrary x1 to x2 in the x-direction and 
from the wall (y = 0) to co in the y-direction with the assumption of two- 
dimensionality on the average in the z-direction. Thus the left-hand side gives the net 
entropy flux to this region, i.e. the net entropy production rate. Meanwhile, the first 
term on the right-hand side is the integration of -2v,i3p/ay on the wall surface 
according to Gauss’ Theorem and the second term gives the entropy production rate 
due to vorticity in this region. The vorticity of the mean flow is larger as the flow 
comes closer to the wall and the disturbance of vorticity due to its unsteady release 
is also dominant close to the wall. As can be seen from ( Z l ) ,  the vorticity of the fluid 
motion in the boundary layer increases the entropy and at the same time controls 
aplay so as to sustain the rate of the entropy increase at a low level. Mechanically, 
i t  is important to find the process whereby the distribution of vorticity i3pli3y > 0 can 
be obtained and the entropy production rate is decreasing. Namely, we should 
discuss the reduction of the degree of freedom in vortices in connection with 
ap/ay > 0 near the wall surface. 

Supposedly the most plausible situation will be such that longitudinal vortices are 
formed and develop near the wall surface. The static pressure p a t  each vortex centre 
is lower, as the vorticity increases, with the result that a positive value of ap/ay can 
be obtained. Referring to (l)’, it can be understood that the condition of ap/ay > 0 
close to the wall surface will also reduce the instability of the flow. Meanwhile, unlike 
the other types of vortices, the longitudinal vortices stay longer near the wall with 
a persistent effect and the axial component of vorticity makes no direct influence on 
the frictional resistance of the wall. From this behaviour, the relationship between 
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boundary-layer turbulence and the formation of longitudinal vortices close to the 
wall can be considered to  represent the response of the flow in order to maintain the 
equilibrium of a turbulent boundary layer. 

5. Conclusions 
The dynamic instability of the sublayer due to turbulence normal to the wall 

surface is analysed using a turbulence model. As a result the possibility of 
longitudinal vortices being formed in the sublayer is deduced. Thus considering the 
previous experiments which clarified the energy supply of longitudinal vortices to the 
turbulence field, a feedback loop showing the equilibrium attained in the turbulent 
boundary layer is derived. The present analysis is applicable to  a general boundary 
layer involving a disturbance, and therefore it may also provide an explanation for 
the three-dimensionalization accompanying an amplification of a small two- 
dimensional disturbance within a laminar boundary layer. When a random 
disturbance is introduced into a boundary layer, regular longitudinal vortices are 
observed in the sublayer. The relationship between the intensity of turbulence and 
the spatial wavenumber of the longitudinal vortices is consistent with the results of 
analysis. The relation between the boundary-layer turbulence and the regular 
longitudinal vortices in the sublayer is reasonably explained by the thermodynamic 
argument for the irreversible processes. 

Pertaining to the feedback mechanism, we have discussed in $2 the relation 
between the turbulence intensity and the wavelengths of longitudinal vortices using 
available knowledge for the turbulence from longitudinal vortices in the sublayer ; 
and in $4 the relation between the intensity of longitudinal vortices and ap/ay. Both 
discussions reveal the primary importance of ap/ay near the wall for the equilibrium 
of a turbulent boundary layer. As the discussion in $4  is based on a nonlinear 
analysis, the result shows not only the importance of ap/ay in the linear stability 
analysis, but also the relation between the amplified longitudinal vortices and 
resultant positive ap/ay. It would be reasonable to consider that  a multiple feedback 
mechanism or self-organization is in operation in the turbulent boundary layer 
(Haken 1978). 

The author would like to express his thanks to Mr H. Koyama, Department of 
Aeronautics, Faculty of Engineering, University of Tokyo, for his continuous efforts 
throughout this research. 
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